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ABSTRACT 

The problem of a particle trapped in a time dependent meridional magnetic 

mir ror  field and at the same time subjected to a time dependent perpendicular 

electric field ( E  * B = 0) is considered. Bounce averaged guiding center theory 

is used to  derive expressions for the drift velocity components. These drift ex- 

pressions depend in a straightforward iashion on the struciures d ilie iiiagE&2e 

and electric fields and on the particle charge, kinetic energy, longitudinal in- 

variant, and bounce period. In the special case of a static magnetic field, no 

electric field, and J = 0 particles, the drift equations a r e  integrated and the 

bounce averaged guiding center trajectory obtained. 
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GUIDING CENTER DRIFTS IN TIME-DEPENDENT 

MERIDIONAL MAGNETIC FIELDS 

INTRODUCTION 

We are concerned in this paper with the guiding center drifts of particles 

trapped in mir ror  magnetic fields whose field lines a r e  totally contained in  con- 

stant longitude-i.e., constant +-planes (in a spherical coordinate system). We 

call magnetic fields of this type meridional magnetic fields, the field of a mag- 

netic dipole being an example. However, no requirement of axi-symmetry is 

imposed on the field. Time variations which preserve the meridional character 

of the field are also allowed. 

Electric fields accompany such magnetic time variations. In addition there 

may exist electrostatic electric fields ( V x E  = 0). (A source of such electro- 

static fields might be a low-,B plasma confined by the magnetic geometry.) We 

here  assume that the total electric field lies perpendicular to the magnetic field 

( E - B  = 0). 

For the field of a static magnetic dipole and in the absence of electric fields, 

Northrop [1966], using guiding center theory, has derived a rather simple ex- 

pression for  ($), the longitudinal drift  rate of a particle averaged over its 

bounce motion (Bounce averages a re  denoted by ( ).), 
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Here c is the speed of light; p is the magnetic moment of the dipole; r is the 

equatorial crossing radius of the guiding center drift shell; and e, W, J,  and T 

are respectively the charge, kinetic energy, longitudinal invariant, and bounce 

period of the drifting particle, 

J m 4 vII d s ,  

m being the particle mass and the s-integrals being extended over a complete 

guiding center bounce period. Equation (1) for the dipole field drift ra te  can be 

shown (with some amount of algebra) to be exactly equivalent to the expression 

derived by Hamlin, Karplus, Vik, and Watson [1961]. Northrop's result is 

aesthetically pleasing in that only the familiar particle parameters e ,  W ,  J,  

and T appear in it; our results for the drifts in more general fields share this 

property. 

THEORY 

We have found that for other meridional (but not necessarily either axi- 

symmetric or time independent) magnetic fields, the drift rate is simply expressed 

in t e rms  of the particle parameters e ,  W, J,  and T; the quantities a and pidentifying 

the field line upon which the guiding center is instantaneously bouncing; and 
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derivatives of the electric potential a. A derivation of these results is com- 

municated here. 

A guiding center drifts  across magnetic field lines at a rate which depends 

on its bounce phase. We here assume that the size of the electric field and the 

space and time variations of both the magnetic and electric fields a r e  sufficiently 

small that over a complete bounce period a guiding center drifts only a small 

amount, The bounce path is then nearly periodic, and it is significant to consider 

the rate of guiding center drift averaged over the bounce motion. We are here 

concerned with this average drift of guiding centers. 

The bounce averaged drift rate is resolved into components (k) and ( b ) ,  
the Euler potentials a and /3 being defined in the usual fashion 

B ( r ,  t )  = V a ( r ,  t )  x V & r ,  t). (4) 

The drifts (k) and ( P )  determine a trajectory in a Cartesian two-dimensional 

a ,  ,B space, each point of which represents a magnetic field line. The relations 

a = a( r, t ), ,8 = p( r ,  t )may subsequently be used to translate the a ,  p tra- 

jectory into one-from field line to field line-in real  space, 

\ I  . .  

Northrop [1963] provides us  with the dynamical equations for averaged 

guiding centers, 
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correct to leading order in the adiabatic ( d e )  expansion. The quantity K is 

given for each particle by the expression 

with M the particle magnetic moment ( M  = WI/B). In the absence of time varia- 

tions K is thus the total energy of a particle moving in the magnetic field B through 

the electrostatic potential Q. 

For meridional magnetic fields we can and shall choose p as longitude 4. 

With this choice VP = ( r s i n  8)- 

to the magnetic field) andaP/at (r, t )  = 0. The Euler potential a ( r ,  9, 4, t )  is 

then from Equation (4) any well behaved solution to 

G4 is totally azimuthal (hence perpendicular 

On the time scale of many bounces K is not a conserved quantity in this time 

dependent situation. 

We now solve Equation (6) for vI, and substitute the result  into the defining 

Equation (2) for J. We do so, noting that the infinitesimal arc length ds  is 

(from the field l ine  equation) rB d 8 , B o ,  d 9  being the increment in co-latitude 
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subtended by ds. Substituting the ensuing expression for J into Equations (5), 

we obtain 

The integrals in Equations (8) a r e  carried out at constant a and @ between the 

mir ror  co-latitudes, 194 and 9/., of the bouncing particle. The multiplicative 

factor of 2 in each appears to compensate for the fact that the +integral repre- 

sents only half the bounce motion. N o  contribution results from differentiation 

of the limits of integration since v,, vanishes at both 04 and gP. 

We now rearrange the integrands of Equations (8) 
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- ' [ K - M B - e @ ] - ' / 2  [T K - e @  a B  f e $]} * (9b) 
2 

The general expression for the electric field [Northrop, 19631 

reduces for the choice p = 4 to 

In our model E * B = 0 and it follows that magnetic field lines are equipotentials, 

so that a, Ja. /da ,  and d d d 4  remain constant for the integrations occurring in 

Equations (9). Furthermore, to the order in rn/e which we are working the 

variation in K over the bounce motion is negligible [Northrop, 19631. 

Consider now mirror-type e meridional magnetic fields having the properties 
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a. and al being functions independent of distance along the field line a ,  4. Fields 

with the properties Equations (12) [and similarly fields satisfying Equations (14) 

following] are selected for consideration because of the simplicity of the resultant 

expressions for the drifts. For fields of the form Equation (la), (6) becomes 

In obtaining Equation (13) from Equation (9a) the definitions of J and T were  used 

and the particle kinetic energy W = K -  e@ w a s  identified. 

Similarly, for magnetic fields with the properties 

the drift ( a ' ) assumes the form 

When both the meridional magnetic field and the potential @ are axi-symmetric, 

(k) = 0. 
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Mirror-type nieridional magnetic fields of the form 

separable in the coordinates r ,  8, and 4, have the properties indicated in  Equa- 

tions (12) and (14). In Equations (16) p is an arbitrary number greater than 2, 

and f and g a r e  subject to the restriction that the magnetic field be well defined 

for all r > 0.  The axi-symmetric multipole fields are special, curl-free cases 

of muations (16) and correspond to  integral p(L3) , g independent of 4, and 

f (9) = - dPp - (cos 9 >,,'dt9, P, - being the Legendre polynomial of order p - 2. 

Equations (16) describe a mir ror  geometry in a region of space provided that 

at least one magnetic minimum occurs on field lines, i.e., dB/Ml  a, 4, = 0, 

d B / M 2  1 a ,  & ,  > 0 for  at least one point on B-lines in that spatial region. 

For the field, Equation (16), we choose 

With this choice all gauge frcc4om in this problem is eliminated, for d W d a  and 

d@/d4 must now be such as to yield the correct  electric field through Equation (11). 
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It may now be directly verified that 

and 

1 - - 
a. - 2a ’ 

- ____  P 1  
a l  - p - 2  a ’  

Substituting into Equations (13) and (15), we find for the drift components 

Northrop’s dipole field result, Equation (l), is recovered from Equation (19) by 

the identification @ = 0, p = 3, g = -p, f 

a - - ,u s in2  O/r = -p/ro. 

s i n  19, and (from Equation 17) 

- 

In the general, time dependent case, the complicated a ,  +, t dependence of I 

the right sides of Equations (19) and (20) prohibits analytic determination of 

the guiding center trajectory. In simplification we therefore focus attention on 
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the situation where the magnetic field is static and there are no electric fields. 

Now the particle kinetic energy W is constant, @ is zero, and we obtain 

by dividing Equation (20) by Equation (19). 

Even in the form Equation (21) , the a ,  4 dependence of the bounce period T 

inhibits further progress. The case of J = 0 particles is, however, one limiting 

situation which can be handled. These particles have no component of motion 

along the magnetic field and drift so as to always remain a t  a local magnetic 

minimum, dB/dt91 a, 9= 0. The bounce period T for such particles defined in the 

J -, 0 limit is non-vanishing. For J = 0 particles, Equation (21) reduces to  

Equation (22) can be integrated to yield 

A being a constant determined for each trajectory. In order that the magnetic 

field be well defined for all r > 0, g must be a periodic function of 4. It follows 

then from Equation (23) that a particle executes closed loops in a ,  P space, 

indicative of the fact that after each real space excursion of 277 in longitude a 

particle returns to the same field line for  this static situation. 
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The time development of the trajectory may now be traced using Equation 

(23) coupled with Equation (19) simplified for static B, @ = 0, and J = 0, 

C P  wg-2/p . * - -- C P  -- 
dt - ea p - 2  = e A p - 2  

Integration of Equation (24) depends, of course, on a choice of g, and for most g 's  the 

+-integral cannot be explicitly evaluated. For the interesting case of small azimuthal 

modulations of the form g = 1 + E cos" 4 ,  E << 1, n > 0, it is possible, however, 

to  develop from Equation (24) the time history of 4 as an asymptotic series in E .  
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